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Abstract—Virtual training is a relatively novel field in which 

human beings learn to perform certain tasks by repeatedly 

executing them in a virtual reality environment. To make such 

training environments more effective, the agent paradigm has 

proven to be a useful tool. By conceptualising a training system 

as a 'virtual tutor', the system may be able to support the trainee 

in a similar manner as human instructors do, among others by 

providing personalised feedback and adaptive training material. 

The current paper describes a project that has as aim to develop 

a virtual training environment for decision making under stress, 

targeted at professionals in the public domain. The main 

contribution is two-fold: first, a global overview of the project is 

presented. Second, a formal approach is put forward for the 

design of the training environment, based on agent-based 

simulation and verification. By generating a computational model 

of the envisioned system and formally analysing the resulting 

simulation runs, the behaviour of the system can be studied 

before its actual implementation, thus providing a method for 

rapid prototyping. 
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I. INTRODUCTION 

In public domains such as law enforcement, public 
transport, and health care, the professionals involved often 
have to act under threatening circumstances. For example, in 
case a tram driver is confronted with an aggressive passenger 
who refuses to buy a ticket, should she a) confront the 
aggressor, b) let him go, or c) call for support? Even though 
they usually have clear instructions about how to act in such 
situations, these professionals often have difficulties in 
making appropriate decisions, due to a combination of factors 
[1, 2]. Firstly, unexpected situations often require impro-
visation, i.e., deviation from standard protocols. Secondly, 
time to make decisions is often limited, which makes that the 
persons experience much pressure. Thirdly, threatening 
circumstances may cause emotions that are not experienced in 
everyday situations. Consequently, professionals in the public 
domain often make suboptimal decisions when they are under 
stress [2, 3, 4]. 

In addition, professionals in the public domain have an 
increased risk of developing anxiety related disorders such as 
Post-Traumatic Stress Disorder (PTSD), especially if the 
situation involves extreme violence and/or human casualties 
[5]. Costs associated with PTSD, both to individuals and to 

society as a whole, are extremely high [6, 7]. Moreover, even 
light variants of PTSD may lead to psychological problems, 
reduced professional ability, or other personal discomfort. For 
this reason, reducing the number of stress-related disorders in 
the public domain will save extensive costs and discomfort, 
both at an individual and a societal level. This leads to the 
conclusion that there is a strong need for these professionals to 
be better trained to cope with critical situations. Such training 
should ideally focus on two aspects, namely 1) improvement 
of the quality of decision making and 2) better regulation of 
the emotional response to threatening circumstances. 

To deal with threatening circumstances, a variety of 
techniques and protocols are available that prescribe how 
employees in domains like law enforcement, public transport, 
and health care should act under stress [8, 9]. These include 
communication skills (both at a verbal and a non-verbal level), 
conflict resolution strategies, and emotion regulation 
techniques. To learn to effectively apply such techniques, 
professionals receive dedicated training, both directly on-the-
job and in artificial environments. Since on-the-job training is 
not considered sufficient because of limited possibilities to 
create the desired learning scenarios, ‘offline’ training 
receives much attention. Such training often uses role-play, 
where the roles are played either by co-students or by 
professional actors. Although reasonably successful, these 
types of training have important drawbacks. First, they are 
very costly, both in terms of money and time. As a result, the 
frequency by which they are offered is low. And second, there 
are large differences in the successfulness of role-play-based 
training: for some students the learning effect is large, whereas 
for others it is minimal. In conclusion, existing training is 
expensive, and hard to tailor to individual needs. 

Instead, training based on virtual reality (VR) may provide 
an interesting alternative. The current paper is part of a large 
project that explores to what extent VR-based training can be 
used to improve the professional skills of people that have to 
act in threatening circumstances. VR-based training can be 
considered a particular instance of serious gaming, i.e., ‘the 
use of computer games designed for a primary purpose other 
than pure entertainment’ [10]. In this case, this purpose would 
be to acquire better skills with respect to decision making and 
emotion regulation under stress. Serious games usually 
involve goal-directed activities in which a competitive element 
plays a role. Over the last decade, serious gaming has received 



widespread attention in research and industry, which has 
resulted in several successful applications. The classical 
example of a game for training purposes is the flight simulator 
for aviation pilots, but since then the number of applications 
has grown rapidly, including serious games for military 
missions [11], surgery [12] and negotiation [13, 14]. 

VR-based training offers a solution to many of the 
problems of real world training. In particular, VR-based 
training is less costly and time-consuming, easier to set up, 
manipulate, and repeat, less dependent on place and time, and 
involves fewer physical risks and ethical difficulties. 
Moreover, recent developments in Human-Computer 
Interaction enable training systems to measure the mental and 
physical state of their users by means of non-intrusive sensors 
[15]. As a consequence, training can be adapted more easily to 
the needs of an individual. VR-based training is therefore a 
promising instrument regarding training of decision making in 
threatening circumstances, because existing training is costly 
and difficult to organise. 

In spite of this promising prospect, the design of a training 
system as sketched above is a non-trivial task. It involves the 
implementation of a number of components, including a 3D 
virtual environment to generate realistic scenarios, sensors for 
performing physiological measurements, models for analysis 
of the trainee’s mental state and models for providing 
personalised feedback. Also, the different components need to 
be integrated and tested. As a first step in the design of 
complex software systems, several authors propose (agent-
based) simulation as a useful approach (e.g., [16, 17, 18, 19]). 
By generating a simulation model of the envisioned system 
and (formally) analysing the resulting simulation runs, the 
behaviour of the system can be studied before its actual 
implementation.  

Following this line of reasoning, the current paper applies 
agent-based simulation to study the behaviour of the virtual 
training environment envisioned in our project. The main 
contribution is two-fold: first, a global overview of the project 
itself is presented. Second, a formal approach is put forward 
for the design of the training environment, based on agent-
based simulation and verification. For this second element, the 
focus is on a specific part of the environment, namely a 
module that generates feedback on the user’s emotional state . 

The paper is organised as follows: Section 2 provides an 
overview of the larger project of which this work is part, and 
of its current status. In Section 3 we present the modelling 
approach used in the current paper, based on simulation and 
formal analysis. In Section 4, a simulation model of the 
training system is presented, and some resulting simulation 
runs are discussed in Section 5. In Section 6, the results of the 
simulation are analysed using formal verification techniques. 
Section 7 is a conclusion. 

II. PROJECT OVERVIEW 

The main aim of the project as a whole is to develop an 

intelligent system that is able to analyse human decision 

making processes in threatening circumstances, and analyse 

the causes of incorrect decisions and inadequate stress 

regulation. The system will be incorporated in an electronic 

training environment for employees in the public domain, 

based on Virtual Reality (VR), cf. [20]. In this environment, 

trainees will be placed in a virtual scenario, in which they 

have to make difficult decisions, while negative emotions are 

induced. During the scenario, modern Human Computer 

Interaction techniques will be applied to measure their emo-

tional state. This information will then be used as input for the 

intelligent system, to determine why the trainee made certain 

less optimal decisions and to teach her how to improve this.  

An important asset of the VR approach is that the system 

can adapt various aspects of the training (e.g., scenarios, 

difficulty level, feedback) at runtime on the basis of its 

estimation of the trainee’s mental state. In this way, both of 

the training goals can be fulfilled: 1) by selecting training 

scenarios with an appropriate context in terms of difficulty 

level, and providing useful feedback, the system can improve 

the trainee’s decision making behaviour, and 2) by selecting 

training scenarios with an appropriate context in terms of 

stress level, the system can improve the trainee’s emotion 

regulation skills. 

A. System Overview 

Figure 1 depicts the global architecture of the environment. 

The rounded rectangles denote components of the system, and 

the arrows denote information flows. The normal rectangles 

indicate clusters of components that have the same function 

(i.e. analysis or support). In the training environment, the 

trainee will be engaged in a 3D virtual reality environment 

shown on a computer screen, while being monitored by an 

intelligent training agent. The VR scenario is generated by a 

separate module within the agent, which contains knowledge 

about relevant scenarios in a particular domain (e.g., issuing 

parking tickets, or selling tram tickets). The trainee observes 

the events that happen in the scenario (via vision and sound), 

and has to act in the scenario this by selecting the most 

appropriate action (currently this is simply implemented by 

means of a multiple choice menu). During training, the human 

is connected to a (non-intrusive) device
1
 that measures 

physiological states related to arousal and stress; in particular 

heart rate and skin conductance. The data measured by this 

device are then used by the agent as input for a computational 

model that integrates them at runtime, to assess the trainee’s 

levels of stress and (negative) emotions (the affective model). 

This assessment of the trainee’s affective state is combined 

with information about the status of the task (e.g., the actions 

performed by the trainee), and used by another computational 

model (the decision making model) to assess whether (and 

why) the trainee made certain mistakes. The outputs of both 

models are analyses of the trainee’s emotional state (e.g., how 

much stress does she experience?) and of her decision making 

behaviour (e.g., are any incorrect actions selected?), 

respectively. This information is used for two purposes: by the 

scenario development module, to modify the running scenario 

                                                           
1 http://www.biosignalsplux.com/ 



(e.g., to repeat a certain crucial event, or to induce more 

stress), and by the feedback determination module, to provide 

feedback to the trainee (e.g., advices to apply a specific 

emotion regulation strategy); cf. [21]. 
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Fig. 1. Global Architecture of the Training Environment 

B. Current Status 

The proposed training environment is being developed and 

tested in multiple steps, first focussing on separate modules 

depicted in Figure 1, and finally integrating them into the 

overall architecture. The current section provides an overview 

of what has been achieved so far, and of the specific focus of 

the current paper. 

VR Environment and Scenarios 

To give trainees the experience that they are dealing with a 

real-world situation, a realistic VR Environment is required. 

This environment is currently being implemented, in 

collaboration with a private software company, which 

develops its proprietary, state-of-the-art game technology. 

This technology is specifically designed for situation and 

interaction training. Unlike existing software, it focuses on 

smaller situations, with high realism and detailed interactions 

with virtual characters. True-to-life animations and photo-

realistic characters help to immerse the trainee in the game. To 

develop the content for the training, environments, vehicles 

and other objects are re-created (e.g., training rooms for police 

officers, or virtual replicas of trams), so that trainees are 

familiar with their own material and work-environment.  

For our project, two different domains are addressed, 

namely law enforcement and public transport. To create 

realistic training situations, a library of scenarios has been 

developed for the targeted domain (e.g., selling tram tickets or 

handling domestic violence). The content of these training 

scenarios has been specified based on brainstorming sessions 

with domain experts. Speech and non-verbal behaviours of the 

characters are mostly pre-animated, but it is also possible to 

modify scenarios at runtime, which is done by the scenario 

development module. This results in a game flow that strives 

for an optimal engagement of the player. 

Physiological measurements 

VR-based training can only be effective if the virtual 

scenarios trigger emotional responses that are comparable to 

the reactions people show to the same stimuli in real world 

scenarios. To test whether this is indeed the case, a series of 

pilot experiments has been performed, in which the effect of 

different types of virtual stimuli on participants’ emotional 

response was investigated. The stimuli used in these 

experiments varied from affective pictures to affective videos 

and affective games (all containing material with a negative 

valence, like guns or scary animals). Although some 

experiments are still ongoing, preliminary results are 

promising. For example, the emotional response triggered by 

the various types of affective stimuli was significantly 

stronger than the one triggered by ‘neutral’ stimuli (measured 

in terms of subjective experience as well as physiological 

measurements). In addition, ‘virtual training sessions’ (in 

which the participants were asked to actively process the 

material using emotion regulation techniques like reappraisal) 

seemed to lower the emotional response [22]. 

Affective model 

To enable the training system to draw conclusions about 

the relation between the VR scenario and the trainee’s 

emotional state, physiological measurements will be processed 

(at runtime) by an affective model. As basis for the affective 

model, an existing computational model for emotion 

regulation is used (taken from [23]). Details of this model are 

explained in Section 4A.  

Decision making model 

To enable the training system to draw conclusions about 

the decision made by the trainee, a decision making model is 

being developed. This decision model will incorporate 

domain-specific knowledge about the task at hand, providing 

guidelines for how the trainee should act in particular 

situations. For instance, when dealing with aggressive 

individuals, de-escalation protocols prescribe a number of 

consecutive steps that one should apply to calm down the 

conversation partner [8, 9]. Development of the decision 

making model is currently in progress; see [24] for a 

preliminary version. In a later stage, the decision making 

model will be connected to the affective model, by formalising 

relations between emotional state and decision making (among 

others, making use of cognitive biases like [25]).  

Feedback determination module 

As explained above, the purpose of the feedback 

determination module is to provide feedback to the trainee. 

This feedback may have various forms. First, based on output 

of the decision making module, the system may provide 

explanations about when and why incorrect decisions are 

made. Second, based on output of the affective model, it may 



provide advice about how to control one’s emotional state. For 

example, the system may advice to pay less attention to a 

particular negative stimulus (attentional deployment) or to re-

appraise the meaning of the stimulus (cognitive change). The 

remainder of this paper will focus in particular on the design 

of the feedback determination module, and more specifically 

on the second type of feedback - i.e., how to ensure that the 

trainee reaches a desired emotional state? 

III. MODELLING APPROACH 

The backbone of the project consists of a generic 

methodology for development of adaptive intelligent support 

systems based on computational models of human-related 

processes. This methodology, of which the details are 

explained in [15], assumes that all (physiological, cognitive, 

and social) processes involved in a certain domain can be 

defined as sequences of states over time, and that 

computational models of such processes can be developed by 

formalising the temporal relations between those state. This 

idea corresponds well to the basic assumptions behind the 

computational modelling and simulation approaches TTL [26] 

and LEADSTO [27]. Therefore, these two approaches are 

exploited in the current paper.  

The predicate-logical Temporal Trace Language (TTL) 

[26] integrates qualitative, logical aspects and quantitative, 

numerical aspects. This integration allows the modeller to 

exploit both logical and numerical methods for analysis and 

simulation. Moreover it can be used to express dynamic 

properties at different levels of aggregation, which makes it 

well suited both for simulation and logical analysis. To 

describe dynamic properties of complex processes such as the 

displacement of crime, explicit reference is made to time and 

to traces. A fixed time frame T is assumed which is linearly 

ordered. Depending on the application, it may be dense (e.g., 

the real numbers) or discrete (e.g., the set of integers or natural 

numbers or a finite initial segment of the natural numbers). 

Dynamic properties can be formulated that relate a state at one 

point in time to a state at another point in time. A simple 

example is the following (informally stated) dynamic property 

about the intensity of an agent’s emotional state:  
 

For all traces γ, 

there is a time point t such that 

agent A experiences an emotion with intensity higher than x.   
 

A trace γ over an ontology Ont and time frame T is a 

mapping γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈ T) 

in STATES(Ont). The temporal trace language TTL is built on 

atoms referring to, e.g., traces, time and state properties. For 

example, ‘in trace γ at time t property p holds’ is formalised by 

state(γ, t) |= p. Typically, state properties refer to agent-based 

concepts, such as observations, beliefs and desires. Here |= is a 

predicate symbol in the language, usually used in infix 

notation, which is comparable to the Holds-predicate in 

situation calculus. Dynamic properties are expressed by 

temporal statements built using the usual first-order logical 

connectives (such as ¬, ∧, ∨, ⇒) and quantification (∀ and ∃; 

for example, over traces, time and state properties). For 

example, the informally stated dynamic property introduced 

above is formally expressed as follows: 

∀γ:TRACES ∃t:TIME ∃i:REAL 

state(γ, t) |= has_emotion(A, i) & i≥x 

To be able to perform (pseudo-)experiments, only part of 

the expressivity of TTL is needed. To this end, the executable 

LEADSTO language [27] has been defined as a sublanguage 

of TTL, with the specific purpose to develop simulation 

models in a declarative manner. In LEADSTO, direct 

temporal dependencies between two state properties in 

successive states are modelled by executable dynamic 

properties. The LEADSTO format is defined as follows. Let α 

and β be state properties as defined above. Then, the notation 

α →→e, f, g, h β means: 

If state property α holds for a certain time interval with duration g, 

then after some delay between e and f 

state property β will hold for a certain time interval with duration h. 

As an example, the following executable dynamic property 

states that “if an agent a experiences an emotion with intensity 

i during 1 time unit, then (after a delay between 0 and 0.5 time 

units) this agent will experience the same emotion with 

intensity i*0.9 during 3 time units”: 

∀a:AGENT ∀i:REAL 

has_emotion(a, i)  →→0, 0.5, 1, 3  has_emotion(a, i*0.9) 
 

Based on TTL and LEADSTO, two dedicated pieces of 

software have been developed. First, the LEADSTO 

Simulation Environment [27] takes a specification of 

executable dynamic properties as input, and uses this to 

generate simulation traces. Second, to automatically analyse 

the resulting simulation traces, the TTL Checker tool [23] has 

been developed. This tool takes as input a formula expressed 

in TTL and a set of traces, and verifies automatically whether 

the formula holds for the traces. In case the formula does not 

hold, the checker provides a counter example, i.e., a 

combination of variable instances for which the check fails.  

IV. COMPUTATIONAL MODEL 

To enable the training system to reason about the trainee’s 

emotional state, the approach put forward in [15] is used. This 

approach, which is inspired by the Ambient Intelligence vision 

[28], assumes that the process under consideration (in this 

case: human emotion regulation) is modelled as a 

computational model in LEADSTO (called domain model). 

Next, by applying model-based reasoning techniques to the 

domain model, an analysis model and a support model can be 

created, which can be incorporated into an intelligent system 

(in this case: the virtual training environment). Based on the 

analysis model, the system is able to reason about the domain 

model, in order to draw conclusions about when an undesired 

state is reached (in this case: when the trainee’s emotional 

state is above a certain threshold). Similarly, based on the 

support model, the system is able to draw conclusions about 

which support actions could be effective to deal with the 

undesired state is reached (in this case: changing the scenario, 

or providing advice). 



In Section 4A, the domain model used for the current 

project is briefly summarised. The model is an existing com-

putational model for emotion regulation, described in [23]. In 

Section 4B and 4C, we explain how this domain model is con-

verted to an analysis model and a support model, respectively. 

A. Domain Model for Emotional Regulation 

The domain model for emotion regulation is taken from 

[23]. This model, which has been inspired by the theory by 

Gross [29], is depicted in Figure 2. In the picture the circles 

represent different states, which are all formalised in a 

numerical manner, in terms of a variable with a real value 

between 0 and 1. In an actual application, real world concepts 

should be mapped to values in this interval. For instance, a 

very threatening stimulus (e.g., a person with a gun) could be 

represented as a world state with value 0.9, and a moderately 

intensive feeling of fear as a feeling with value 0.5. Arrows are 

used to depict the influence of one state on another state. The 

model that represents the emotion generation is depicted by 

using solid arrows. The emotion regulation is represented by 

the control state. Each state of the emotion generation model 

can be regulated by the control state (indicated by the dashed 

arrows). The control state has a suppressing effect on the other 

states. All of the states in the model have a positive effect on 

the control state, representing a kind of monitoring process.  
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Fig. 2. Overview of the emotion regulation model 

As a starting point, the model assumes a world state with a 

negative valence that is observed by the human (e.g., an 

aggressive individual). This leads to a sensory representation 

and a belief about this world state. Next, the person prepares 

to act (e.g., to run away) and this preparation together with a 

desire (e.g., to avoid the stimulus) activate an emotional 

feeling, which in turn may influence the belief state. This 

generation of feeling from preparation of emotional response 

follows the account based on an as-if body loop introduced by 

Damasio [30]. In the model, we abstract from the specific 

‘type’ of emotion (e.g., sadness, fear, anger) that is addressed, 

although we assume that it has a negative valence (we use 

‘fear’ in our examples). Further, the preparation results in both 

a physical response (e.g., increased heart rate) and an action. 

Each of the states in the emotion generation model is 

generated by taking the value of that state at time point t and 

adding a fraction of the aggregated mean of values of states 

that have an influence minus the value of the state at time 

point t. For feeling, the formula would be as follows (where 

ηfeeling represents the speed of activation spread): 

Emotion Generation 

∀a,b:REAL 

has_value(feeling, b) & aggimpact(feeling, a) →→ 0, 0, ∆t, ∆t   
has_value(feeling, b + ηfeeling * [a-b] * ∆t) 
 

The aggregated mean in this example would be calculated 

by using the values of desire, preparation and (in case of 

regulation, see below) feeling.control: 
 

Aggregated Impact 

∀d,p,f,fc,c1,c2,c3,c4:REAL 
has_value(desire, d) & has_value(preparation, p) &  
has_value(feeling, f) & has_value(feeling.control, fc) & 
conn_strength(desire, feeling, c1) &  
conn_strength(preparation, feeling, c2) &  
conn_strength(feeling, feeling, c3) &  
conn_strength(feeling.control, feeling, c4)  

→→ 0, 0, ∆t, ∆t   
aggimpact(feeling, c1*d + c2*p + c3*f + c4*fc) 
 

The values are weighted by the connection strengths 

between the two states (see the conn_strength predicates).  

The generation of the other states is determined in a 

similar manner. Only for the desire state no aggregated mean 

has been used since in the model this state is not influenced 

positively by other states. 

To enable the individual to regulate its emotion levels, 

control states have been added for the different states in the 

model (depicted together as one oval in Figure 2). Each 

control state has a negative influence on the related state in the 

emotion generation model. To this end, the value of the 

downward connections from the control to the different states 

(i.e., the values of conn_strength(s.control, s)) is taken negative 

for all state s. The upward connections (i.e., conn_strength(s, 

s.control)) are used to monitor the activation levels of the states. 

Their strength represents the extent to which the person is able 

to monitor (and regulate) that particular state. This way, the 

emotion regulation strategies by Gross [29] can be simulated 

as follows:  

• For situation selection and situation modification (see [29]), the 

world state is altered (e.g., avoiding a stimulus).  

• There are two variants of attentional deployment in the proposed 

model. First, the observation state is altered (e.g. by looking 

away from the stimulus). Secondly, in case of sensory 

representation the internal focus of attention is regulated (e.g., 

thinking about something else). 

• Cognitive change is possible when the belief is regulated (e.g., 

reappraisal of the situation: saying to yourself that the situation is 

not bad). But it is also possible to regulate the desire by adjusting 

one’s goals. 

• The response-focused regulation strategy suppression is applied 

to feeling (e.g., suppressing feelings experienced), physiological 

response (e.g., showing a pokerface) and preparation/action 

(e.g., staying at a location instead of running away). 

In [23], a preliminary validation of the model was 
performed, where the model was used to replicate empirical 
data obtained from an experiment with human participants 
[22]. This study pointed out that the model outperformed the 
performance of a linear approximation.  



B. Analysis Model 

To convert the domain model sketched above to an 

analysis model (i.e., a model that allows a system to reason 

about the dynamics of the domain model), the approach put 

forward in [15] is used. This approach starts by deciding for 

which states in the domain model the system can obtain 

information by ‘observing’ them. For our domain model, a 

good candidate is the world state (after all, the system already 

has information about which stimuli are shown, since it 

generates them itself). Also, the states for physical response 

(using the sensors for heart rate and skin conductance) and 

action (by observing the actions selected in the multiple 

choice menu) could be ‘observed’, but in the current paper we 

do not use them in this way (instead, we reserve them for 

future validation and tuning purposes, see Section 7). After 

that, one should decide about which state in the domain model 

one should draw conclusions. In other words, what is the state 

of interest of the system? In our case, this is the state feeling, 

since the main goal of the system is to keep the trainee’s level 

of emotion at a certain level. Hence, our system to be designed 

should receive information about the world state as input, and 

by performing model-based reasoning upon the domain model 

it should draw conclusions about the feeling state. The 

technique used for this is straightforward: for every formula in 

the domain model, a corresponding formula for the analysis 

model is created. The only difference is that in every rule the 

actual value of a state is replaced by a belief of the system 

about this value: 

Beliefs on Emotion Generation 

∀a,b:REAL 

belief(feeling, b) & aggimpact(feeling, a) →→ 0, 0, ∆t, ∆t   
belief(feeling, b + ηfeeling * [a-b] * ∆t) 
 

Also, a constant fmax is introduced, which specifies the 

maximal value of the feeling state that is still considered 

desirable by the system (i.e., a desire of the system about the 

human’s emotion). Finally, a formula is introduced to assess 

whenever an undesired situation is detected, i.e. when the 

believed value of the feeling state exceeds the desired value:  

Assessments 

∀b:REAL 

belief(feeling, b) & desire(feeling, fmax) & b>fmax →→ 0, 0, ∆t, ∆t   
assessment(feeling) 

C. Support Model 

The analysis model enables the system to assess when the 

human’s state of feeling has reached an undesirable level. 

Once this is the case, the support model is activated. As 

discussed earlier, in theory various forms of support can be 

provided, and one of the tasks of the support model is to 

reason about which type of support is most appropriate. To 

this end, it can again reason through the domain model, to 

calculate the expected effect of several hypothetical support 

actions, and select the most appropriate one. The types of 

support that can be provided include the following (see the 

corresponding strategies in Section 4A): 

• Situation modification: modifying the stimuli displayed in the 

game (e.g., make a character show less aggressive behaviour).  

• Attentional deployment: advising the trainee to focus her attention 

on something else (e.g., count to 10). 

• Cognitive change: advising the trainee to re-interpret the negative 

stimulus (e.g., trying to show more understanding for the 

aggressive person’s situation).  

• Suppression: advising the trainee to suppress her negative 

feelings or tendencies. 

Some examples of simple formulas that model situation 

modification and cognitive change are the following (where 

w1 is a parameter that can either be given a static value or be 

determined at runtime based on the previous value): 

Situation Modification 

assessment(feeling) →→ 0, 0, ∆t, ∆t   
set_value_to(world_state, w1) 
 

Cognitive Change 

assessment(feeling) →→ 0, 0, ∆t, ∆t   
propose(cognitive_change) 
 

Suppression 

assessment(feeling) →→ 0, 0, ∆t, ∆t   
propose(suppression) 

Furthermore, the effect of a particular strategy on the 

human should be simulated. For example, for cognitive 

change, this could be realised by adapting the connection 

strength from control to belief (where w2 is a parameter): 

Effect of Cognitive Change 

propose(cognitive_change) →→ 0, 0, ∆t, ∆t   
set_value_to(conn_strength(belief.control, belief), w2) 

The following sections illustrate the impact of these support 

actions on the human’s level of emotion via some simulations. 

V. SIMULATION RESULTS 

To study the behaviour of the model described in the 

previous section, a number of simulation traces have been 

generated under different parameter settings. The current 

section describes four illustrative examples of such simulation 

traces in more detail. The results of the simulation traces are 

depicted in Figure 3. In this figure, time is shown on the 

horizontal axis and the activation values of the state feeling 

(under different circumstances) are shown on the vertical axis. 

In all simulations, the activation values of the world state 

and the desire have been set to 0.8. This indicates, 

respectively, that the trainee is exposed to a rather strong 

stimulus and has a strong desire to avoid this stimulus. The 

other activation states all start with a value of 0. All downward 

connection strengths from the control component to the 

regular states have been set to -0.1. All η values (for speed of 

activation spread) have been set to 0.1. The training agent 

makes use of the same parameter settings.  

In all simulations, except for the no support model, the 

training agent can provide support, as explained in the 

previous section. To this end, the feeling threshold fmax has 

been set to 0.5. If this threshold is exceeded, the supervisor 

agent will provide support. Besides the no support case, three 

different situations are shown, namely support via situation 

modification, cognitive change, and suppression. Here, the 

support parameters w1 and w2 have been set to 0.2 and -1. 



In Figure 3 the blue line shows the situation in which there 

is no support. In this case, the experienced feeling increases 

until it reaches an equilibrium of 0.6 around time point 80. 

The green line represents the situation in which the cognitive 

change strategy has been applied. In this situation the 

activation value increases for a while, but about halfway the 

simulation this value exceeds the threshold fmax, which makes 

that the agent starts providing support (i.e., telling the human 

to perform reappraisal). As a result, the emotion intensity 

drops quickly below this value, after which it stabilises just 

below 0.4 around time point 100. Similarly, the agent can 

support the human by decreasing the emotional valence of the 

stimuli (situation modification, red line). In that case, the 

value of the feeling increases until fmax is exceeded. Then, 

because the intensity of the emotional stimulus is reduced 

permanently, the value keeps decreasing gradually. Finally, a 

situation in which the agent tells the human to suppress its 

response shows similar results to the situation in which no 

support was provided. The reason for this is that, although the 

human does suppress her physiological response, this does not 

have any effect on the experienced feeling. 

 
Fig. 3. Example Simulation Traces 

VI. FORMAL ANALYSIS 

Using dynamic properties specified in the Temporal Trace 

Language as explained in Section 3, a formal analysis of the 

model has been made. A total of 6 dynamic properties are 

used to verify the ability of our support model to lower a 

heightened feeling by proposing a particular type of support. 

These properties are specified in a hierarchical fashion, such 

that when the global property fails, the cause of this failure 

can be found by systematically checking lower level 

properties until the fault has been identified. In particular, the 

following implications between dynamic properties hold: 

IP1 & IP2 ⇒ GP1 

LP1 & LP2 & LP3 ⇒ IP2 

At a global level, the agent needs to guarantee that, 

whenever the level of feeling gets too high (i.e. above a certain 

threshold), then later this feeling returns to a level below this 

threshold. This has been specified in global property GP1. 

GP1 Feeling always returns below threshold 

∀γ:TRACES ∀t1:TIME ∀x1:REAL 

state(γ, t1) |= feeling(x1) & x1>feeling_threshold ⇒ 
[ ∃t2:TIME ∃x2:REAL  

state(γ, t2) |= t2>t1 & feeling(x2) & x2<feeling_threshold ] 

When this property fails, it is important to know whether 

this is caused by a failure to provide support or if the support 

provided did not succeed in lowering the feeling. These 

intermediate properties have been specified below in IP1 and 

IP2. As can be seen, it follows logically that when GP1 fails, 

either IP1 or IP2 also needs to fail, thereby identifying the 

cause more precisely.  

IP1 Feeling above threshold triggers support 

∀γ:TRACES ∀t1:TIME ∀x1:REAL 

state(γ, t1) |= feeling(x1) & x1>feeling_threshold ⇒ 
[ ∃t2:TIME ∃s:SUPPORT  

state(γ, t2) |= t2≥t1 & propose(s) ] 

IP2 Support lowers the feeling 

∀γ:TRACES ∀t1:TIME ∀ s:SUPPORT 

state(γ, t1) |= propose(s) ⇒ 
[ ∃t2:TIME ∃x:REAL   

state(γ, t2) |= t2>t1 & feeling(x) & x<feeling_threshold ] 

Considering the simulation in Figure 3 where no support is 

given, GP1 fails and subsequently IP1 also fails, thereby 

identifying the problem in that simulation. However, if a 

situation is considered whereby for example suppression is 

proposed, which is expected not to lower the feeling but only 

the physical response, IP2 would fail. In that case, a last set of 

local properties (LP1-LP3) has been defined to check whether 

an undesired type of support has been proposed or that the 

support failed in lowering the feeling. 

LP1 Support implies situation selection or cognitive change 

∀γ:TRACES ∀t1:TIME ∀s:SUPPORT 

state(γ, t1) |= propose(s) ⇒ 
[ ∃γ:TRACES ∃t0,t2:TIME ∃x0,x2:REAL 

( state(γ, t0) |= world_state(x0) & t0<t1 & 

  state(γ, t2) |= world_state(x2) & t2≥t1 & x2<x0 ) ˅ 

( state(γ, t0) |= conn_strength(belief.control, belief), x0) & t0<t1 & 

  state(γ, t2) |= conn_strength(belief.control, belief), x2) & t2≥t1 &            
  x2<x0 ) ] 

LP2a Situation selection lowers the feeling 

∀γ:TRACES ∀t1,t2:TIME ∀x1,x2:REAL 

state(γ, t1) |= world_state(x1) &  

state(γ, t2) |= world_state(x2) & t2>t1 & x2<x1 ⇒ 
[ ∃t3:TIME ∃x:REAL  

state(γ, t3) |= t3≥t2 & feeling(x) & x<feeling_threshold ] 

LP2b Cognitive change lowers the feeling 

∀γ:TRACES ∀t1,t2:TIME ∀x1,x2:REAL 

state(γ, t1) |= conn_strength(belief.control, belief), x1) &  

state(γ, t2) |= conn_strength(belief.control, belief), x2) &  
t2>t1 & x2<x1 ⇒ 
[ ∃t3:TIME ∃x:REAL  

state(γ, t3) |= t3≥t2 & feeling(x) & x<feeling_threshold ] 

Proposing suppression would make LP1 fail, showing that 

the support provided does not have effects that are expected to 

lower the feeling. Table 1 gives on overview of which 

properties were satisfied (✓), not satisfied (✗), or not checked 

(-) against the different scenario’s. At this moment, the 

analysis has been made on a support model operating on a 

simulation of the domain model, making it impossible for 

LP2a or LP2b to fail. However, by including these properties, 

similar analyses can be made when such an agent operates on 

a real human to identify whether certain types of support do 

not work for particular people.  



TABLE I.  ANALYSIS OF DIFFERENT SCENARIO’S USING TTL PROPERTIES 

Scenario GP1 IP1 IP2 LP1 LP2a LP2b 

No support ✗ ✗ ✓ - - - 

Situation selection ✓ - - - - - 

Cognitive change ✓ - - - - - 

Suppression ✗ ✓ ✗ ✗ ✓ ✓ 

VII. CONCLUSION 

The paper presented a research project in which a virtual 

training environment for decision making under stress is 

being. Furthermore, a formal method was put forward for 

designing and analysing such a system. For this purpose, a 

domain model on emotion regulation has been described and 

used for developing analysis and support models. Simulations 

of these models were performed to illustrate the usage of dy-

namic properties to analyse and verify the system’s behaviour. 

Using this method, it is possible to formally analyse the 

performance of the analysis and support models, without the 

need to involve human participants. This makes it possible to 

develop and test multiple prototypes (i.e., simulated instances 

of the virtual training environment) rapidly. Obviously, in a 

later stadium, it is important to include human participants in 

the development cycle. But even then, the same dynamic 

properties can be used to verify the system performance. At 

that point, there may be some error between the values 

predicted by the agent and those measured in the real world. 

Therefore, a parameter adaptation model is currently being 

developed, providing the training agent with a means to tune 

relevant parameter values by machine learning. 

There are of course more steps that need to be made before 

the training environment can be completed. Besides finalising 

the decision making model, all components need to be 

combined and implemented in the final virtual environment. 

After this, experiments with professionals using the virtual 

training will provide the data to evaluate the overall system. 
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